# 自由電子レーザー光源により 可能になるEUVスキャナーの 設計オプションの検討

Thomas V. Pistor Panoramic Technology Inc.



Panoramic

#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 強いパワー
  - 狭いスペクトル帯域幅
  - 〇 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



発表の概要

#### ● 自由電子レーザー(FEL)の紹介

- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 〇 強いパワー
  - 狭いスペクトル帯域幅
  - 〇 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



レーザー生成プラズマ(LPP)



#### 自由電子レーザー(FEL)













#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 強いパワー
  - 狭いスペクトル帯域幅
  - 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



自由電子レーザー(FEL)とレーザー生成プラズマ(LPP)の違い

- 1. 強いパワー
- 2. 狭いスペクトル帯域幅
- 3. 偏光
- 4. 高い横方向の空間コヒーレンス
- 5. 強度分布が異なる可能性
- 6. Snの汚染がない -> IFを移動可能
- 7. 別の波長の可能性



#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 強いパワー
  - 狭いスペクトル帯域幅
  - 〇 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ





LPP方式のEUV光源のパワーは現在300~500Wの範囲であり、800W(?)まで達 する可能性がある。

FELは数十kWのパワーが可能!複数のスキャナーに出力できる。

#### 強いパワーにより何が可能になるか?



## 強いパワー#1:高速化(自明)

スキャナーを高速で動かし、短時間で同じドーズ量をレジストに照射できる。直 接的にスループットが増加する。

高速化で起こりうる問題点:

- ステージの機械的な制約
- 光学素子の熱的な制約



# 強いパワー#2:ドーズ量の増加(自明)

同じ時間に大きいドーズ量をレジストに照射できる。

利点:

- 光ショットノイズが減るため、LERが小さくなる
- レジスト材料の選択肢が増える

問題点:

• 熱的な問題-レンズ/マスクの加熱





# 強いパワー #3:光子が貴重だった時に作成された設計の選択肢を見直す

「XXXは良いアイデアだが、光を無駄にし過ぎる」

- 1. スリットをより均一に照明する?強力なホモジナイザー?
- 2. 焦点深度を改善するためにNAを絞る?
- 3. 瞳フィル比を小さくする、あるいは瞳フィル比の範囲を広げる?
- 4. 光学系を小型または安価にする?
- 5. 中心遮光を取り除く?
- 6. 偏光子を入れる? (偏光については後述)
- 7. その他の設計の選択肢 (これは後述)



#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 強いパワー
  - 狭いスペクトル帯域幅
  - 〇 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



#### Raw Spectra



# 吸収されるエネルギーの減少(FELをLPPと比較)



#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 強いパワー
  - 狭いスペクトル帯域幅
  - 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



#### FELは偏光を生成するが、LPPは非偏光









LPP光源



#### 二つの波の干渉: 偏光に依存する!!



様々なシステムにおけるマスク/ウエハー(レジスト)の最大角度

| NA           | 主光線(°) | 最大マスク角度(°) | <u>レジストにおける</u> *最大角度(°) |
|--------------|--------|------------|--------------------------|
| 0.33 EUV     | θ=6    | 10.8       | 19.3                     |
| 0.55 EUV     | θ=5.4  | 11.0       | 33.4                     |
| 0.77 EUV(仮定) | θ=6.8  | 13.7       | 50.4                     |
| 0.93 ArF     |        | 13.4       | 33.2                     |
| 1.20 ArF     |        | 17.5       | 44.9                     |
| 1.35 ArF     |        | 19.7       | 52.6                     |



\*EUV/よ n\_resist=1.0、 ArF/よ n\_resist=1.7と仮定

# 0.33NAにおけるL/Sコントラストとハーフピッチの関係





# 0.55NAにおけるL/Sコントラストとハーフピッチの関係





# 0.77NAにおけるL/Sコントラストとハーフピッチの関係



Panoramic Technology

# 2Dパターンは1Dパターンよりも偏光の効果は小さい

L/Sシミュレーションでは、ダイポール照明が最適な偏光効果を与える。

2Dパターンでは、レイアウトの異なる部分は異なる偏光が効果的かもしれない。



シミュレーション方法

- 各ケースについて、OPCと光源の最適化を行う
  - 厳密マスクモデル(TRIG)
  - 9つの厳密計算(青い点)
- PVバンドを観察する
  - +/-5% ドーズ量
  - +/-45nm デフォーカス(0.33NA)
  - +/-15nm デフォーカス(0.55NA)
  - +/-7.5nm デフォーカス(0.77NA)







0.33NA, 14nmハーフピッチ



0.33NA, 14nmハーフピッチでは、偏光はあ まり重要でない

縦ラインはy偏光がよい

横ラインはx偏光がよい

円偏光は非偏光のように作用する







# 0.55NA, SRAM

Panoramic

Technology

0.55NA, 7nm HP 0.55NA, 8nm HP +/-5% dose, +/-15nm defocus +/-5% dose, +/-15nm defocus 0.55NAの場合、xy偏 光は7nmハーフピッ チでいくらか効果が あるが、8nmハーフ ピッチではあまり効 果がない。





非偏光

# 0.55NA, 直線偏光と円偏光と非偏光の比較



SPIE Conference 12953-42, Pistor, Feb. 2024

Technology

# 0.77NA, 様々なハーフピッチのSRAM







2方向パターン









Source Intensity





SPIE Conference 12953-42, Pistor, Feb. 2024

最適化された 光源

# 0.77NA, 6nmハーフピッチ, メタルパターン





偏光シミュレーションのまとめ

- 0.33NA
  - 任意の偏光で問題ない
- 0.55NA
  - 円偏光が望ましい(非偏光と同じように作用する)
  - 純粋なx偏光または純粋なy偏光でもよいが、円偏光や非偏光に比べると、一部のパターンで少し効果が下がる可能性がある
  - xyゾーン偏光は8nmハーフピッチでほとんど効果がない おそらく労力に見合わない
- 0.77NA
  - xyゾーン偏光は6nmハーフピッチで効果がある *おそらく労力に見合う*
- 主にウエハーへの影響 *このまま発表の後半をご覧下さい*!







東と西のポール

はy 偏光

#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 〇 強いパワー
  - 狭いスペクトル帯域幅
  - 〇 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



# スキャナー設計の事例検討: "i.55"





#### スキャナー設計の事例検討:プロジェクト"i55"

光子が非常に貴重だった時には、0.55NAにおいてハーフフィールド、ア ナモルフィックは賢く創造的な判断だった。





プロジェクト"i.55"

#### FELベースの光源の利点を生かすことで、 フルフィールド、アイソモルフィック、高NA(0.55)のスキャナー を実現できるか?



- スティッチングなし!
- 12" x 6"マスクは不要!
- マスク描画機の解像度をフル活用!
- 少ないマスク枚数!
- 高いスループット!(2倍?)





# アイソモルフィック 0.55NAが引き起こす影響

マスクにおける平面波の傾きが大きい

- 主光線:9.2度
- マスクにおける角度帯域幅:1.3度~17.3度
  - マスクの反射率が低い
    - 強いパワーが必要
    - 熱として吸収されるパワーが増える
  - シャドーイング効果が強い
    - コントラストの減少





#### 現在の多層膜ミラーは角度帯域幅が広くない

Today's Periodic Multilayer Mirror Reflectivity



SPIE Conference 12953-42, Pistor, Feb. 2024

#### 角度帯域幅が広い多層膜ミラー

角度帯域幅を広くするために、多層膜ミラーを"デチューン"できる(全体の反射 率を犠牲にして)。角度帯域幅全体の反射率を最適化するために、表面の6層対 を調整した。

| v b (                           | d0     | Free | 6.85     |
|---------------------------------|--------|------|----------|
|                                 | d1     | Free | 7.094    |
| $\int d_1, y_1$                 | d2     | Free | 7.108    |
|                                 | d3     | Free | 7.1588   |
| d <sub>a</sub> ,y <sub>a</sub>  | d4     | Free | 7.0075   |
|                                 | d5     | Free | 7.17055  |
| $\int d_{3} \chi_3$             | gamma  | Free | 0.472    |
|                                 | gamma0 | Free | 0.46818  |
| $\rightarrow d_{a}, \gamma_{a}$ | gamma1 | Free | 0.468    |
| $d_{\rm c}, \chi_{\rm c}$       | gamma2 | Free | 0.4733   |
| $\downarrow$ $d_{-}V_{-}$       | gamma3 | Free | 0.4721   |
|                                 | gamma4 | Free | 0.47375  |
| <u> </u>                        | aamma5 | Free | 0.472008 |



### 角度帯域幅が広い多層膜ミラー

High Angular Bandwidth Mirror Reflectivity



#### シミュレーションにおける違い

| パラメーター | アナモルフィック 0.55              | アイソモルフィック 0.55 (i.55) |
|--------|----------------------------|-----------------------|
| 主光線    | 5.4°                       | 9.2°                  |
| マスク多層膜 | d=7.0nm, ɣ=0.4<br>反射率:~70% | デチューン<br>反射率:~60%-65% |
| 光源の偏光  | 非偏光                        | xyゾーン偏光               |
| マスク吸収体 | 41nm Pd、<br>垂直側壁           | 41nm Pd、<br>傾斜側壁      |
| 縮小率    | 4X,8X                      | 4X,4X                 |





x 偏光は 最悪の ピンチングを 低減 (間隙が 2.2nmから 3.2nmに 変化)



# x偏光の効果: 8nmサイズ



x偏光により、"ピンチング"は 垂直部分では少し悪化するが、 水平部分では大幅に改善する (水平ラインは軸外の主光線に よる強いシャドーイングを受け る)



強いシャドーイングによりi.55では強力なOPCが必要





i.55, 8nm "メタル"パターン



8nm SRAMパターン ここではi.55 の方がよい 0.55NA、アナモル フィック、非偏光 0.55NA、アイソモ

ルフィック、xy偏光

Panoramic Technology

#### 8nm SRAM - H+V, 最適化した光源

i.55では垂直ラインの方が水平ラインよりも良好に転写される(y方向のシャドーイングが強いため)





i.55のスループット





#### i.55のスループットを現行の0.55NA装置と比較

ステージのスピード:

Panoramic Technology

- マスクステージのスピード:1倍
- ウエハーステージのスピード:2倍

**IFでのエネルギー**:2倍×(70%÷64.5%)=2.17倍

光学系の加熱: 2.17倍、ただし狭いスペクトル帯域幅により低減される

FEL光源の方がスペクトル帯域幅が狭いことで、加熱は低減される。FFA: -52%、PFA: -39%、暗視野マスク: -22%

- FFA: 2.17 × (1-0.52) = 1.04倍
- PFA: 2.17 × (1-0.39) = 1.32倍
- 暗視野マスク: 2.17 × (1-0.22) = 1.69倍

### スループットのまとめ:2倍にするための必要条件

- マスクの枚数 1倍
- 露光の回数 1倍
- マスクステージの速度 1倍
- ウエハーステージの速度 2倍
- FFAで吸収される熱 1.04倍
- PFAで吸収される熱 1.32倍
- 暗視野マスクで吸収される熱 1.69倍
- IFでのパワー 2.17倍(FELは供給できる!)



#### FELはi.55の妥当性を高める

損失が大きい ->ミラーの加熱が増加
FELの狭いスペクトル帯域幅により相殺

シャドーイングの増大 -> コントラストの低下
XYゾーン偏光により相殺(FELは生成しやすい)



#### 発表の概要

- 自由電子レーザー(FEL)の紹介
- リソグラフィーの観点から、自由電子レーザー(FEL)は レーザー生成プラズマ(LPP)とどう異なるか
  - 〇 強いパワー
  - 狭いスペクトル帯域幅
  - 〇 偏光
- スキャナー設計の事例検討:プロジェクト"i.55"
- まとめ



まとめ

- FELベースの光源により、スキャナー設計の選択肢が柔軟 になる
  - 余裕のあるパワー
  - 偏光
  - 狭いスペクトル帯域幅
- 例えば、FELはi.55の妥当性を高める
  - 2倍のスループット(?)、フルフィールド、スティッチングなし
  - もちろん、さらなる検討が必要である





本研究はxLight Inc.との共同で行いました。



